

Experimental Design and Modeling to Improve HPLC Method Performance for Small Molecules

John F. Kauffman, Ph.D. Daniel J. Mans, Ph.D. FDA Division of Pharmaceutical Analysis CASSS CMC Strategy Forum Europe 2015

Disclaimer:

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.

Overview

- Analytical procedures (APs) are a key part of the control strategy for a product.
- Many factors can influence analytical results.
- "Enhanced approaches for development of analytical procedures" (a.k.a. AQbD) can improve method robustness and understanding.
- Terminology
 - Analytical Target Profile
 - Method Operable Design Region

Analytical Target Profile

- The ATP is a prospective summary of measurement requirements that ensure a procedure is "fit for purpose"
 - ATP may be method independent
- Regulatory considerations for implementing ATP
 - Not all methods with same ATP are inter-changeable
 - E.g. from HPLC to NIR
 - Can use comparability protocols

Method Operable Design Region

- Analytical method design space
 - Typically Design of Experiments is used to find ranges for instrument operating parameters and understand sources of variation.
 - Method performance criteria are response factors.
 - Can be conducted together with method validation.
- Considerations for implementing MODR
 - Availability of adequate data to support proposed MODR
 - Assess validation criteria across MODR
 - Confirm system suitability throughout MODR

Current Status

- FDA has approved some NDA applications applying QbD approach to analytical procedures.
- Regulatory flexibility has been granted for movements within the defined MODR.
 - Movements within an approved "Analytical Design Space" are not considered a change in method.

How do we evaluate Enhanced APs at the CDER Division of Pharmaceutical Analysis ?

- DPA Program: Verification of methods submitted in new drug applications
 - Limited experience for Enhanced APs
 - Focus on model equations to select experiments
 - Select conditions for evaluation at MODR extrema based on the sign (+ or -) of the model coefficients
- DPA Research: Develop an Enhanced AP to expand our understanding.

FDA-EMA Collaborative Research on QbD for Analytical Methods

- Joint research with FDA's laboratory/review divisions and EMA
 - Initiated in January, 2013
- Goal of this project is to:
 - Develop analytical methods (e.g. HPLC) based on QbD paradigm.
 - Define protocols for method transfer.
 - Establish methodology for validation of MODR upon site transfer.
 - Define review criteria for evaluation of QbD based analytical methods.

Initial Research Problem Statement

- CDER/DPA will develop an analytical procedure using the QbD paradigm, to be transferred to an EMA lab.
 - Begin with a harmonized compendial method and apply QbD concepts to improve the method
 - Method: HPLC analysis of sildenafil and analogues of sildenafil

Sildenafil and some Analogues

 $R^{1} = Me; R^{2} = H Sildenafil$ $R^{1} = CH_{2}CH_{3}; R^{2} = H homosildenafil$ $R^{1} = CH_{2}CH_{2}OH; R^{2} = H Hydroxyhomosildenafil$ $R^{1} = H; R^{2} = H N$ -desmethylsildenafil $R^{1} = H; R^{2} = CH_{3} N$ -desmethylsildenafil $R^{1} = cyclopentyl; R^{2} = H Cyclopentynafil$

*Pre-existing analogue library prepared for rapid screening surveillance program; harmonized compendial method exists for sildenafil

Example ATP

- The method will separate 6 compounds with high specificity (HPLC resolution ≥ 1.5)
- Quantify each compound at levels from 25 ug to 100 mg per gram of finished product. – Multiple dilutions may be required
- Repeatability: $\leq 2\%$ over six replicates
- Accuracy: within $\pm 15\%$ of the true value at 25 ug and within $\pm 2\%$ of the true value at 100 mg, with 95% confidence.

Starting Point: USP Method for Sildenafil

- Isocratic: 57/28/15 Buffer/Methanol/CH₃CN (Buffer = Phosphoric acid,
 - pH 3 with triethylamine)
- C18 column
- 30 °C
- Poorly separated:
 6 compounds → 3 peaks

A Systematic QbD Approach

- Develop screening designs to identify potential operable ranges and evaluate diverse method options
- Use DOE methodology to predict optimal conditions
- Use statistical analysis to determine ranges of acceptable operating parameters Robustness
- Implemented using S-Matrix Fusion QbD Software

Three Step DOE

1. Broad screen of 3 columns, 2 organic phases, pH and gradient time. (37 experiments)

- Purpose: Identify the best column, pH range
- 2. Fix column and screen 2 organic phases, most promising pH range, gradient time (19 experiments)
 - Purpose: Select most promising organic phase, further narrow pH range
- 3. Fix column and organic phase, screen pH, gradient time, column temperature (16 experiments)
 - Purpose: Final method, operable design region

Screen 1: Best Column (37 Experiments)

- Columns: analytical columns of same ID and length from same supplier
- Mobile Phase
 - MeOH and ACN
 - 10 mM buffer @ pH 4.0, 5.0,
 6.0, 7.0, 8.2
- Gradient Time: 4-20 minutes (10-55% organic)
- Fixed column temperature (30 °C)

Column Screening: A Few Examples

• Low pHs (3.0, 4.0) gave the least # peaks (recall USP pH 3.0)

Column Screening: A Few Examples

• Constant: pH 5.0, MeOH, 12 min gradient

• Constant: pH 5.0, ACN, 12 min gradient

Number of peaks with resolution ≥ 2 : ACN Phenylhexyl

Modeling predicts pH ~6-6.5 optimal for ACN with 10-17 min gradient times (using the resolution ≥ 2.00 metric)

Number of peaks with resolution ≥ 2 : MeOH Phenylhexyl

Modeling predicts pH 5.5-6.0 optimal for MeOH with 10-17 min gradient times

By comparison PFP and C18 have about 4 peaks with resolution ≥ 2.00

Best Overall Answer: Phenylhexyl

Screen 2 (19 Experiments)

- Phenylhexyl column
- pH 5.0, 5.5, 6.0, 6.5
- ACN vs. MeOH
- Gradient Time: 4-20 minutes (10-55% organic gradient)

Number of peaks with resolution ≥ 2 : ACN Phenylhexyl

Number of peaks with resolution ≥ 2 : MeOH Phenylhexyl

Screen 2 Results: Optimal Conditions for ACN and MeOH

- Phenylhexyl elution order of Peaks 2 & 3 (L \rightarrow R) changes between MeOH and ACN
- Peak Areas also change
- Both solvents viable for the ATP, ACN chosen for # plates, sharpness of peaks, and slightly better resolution 24

Screen 3 (16 Experiments)

- Phenylhexyl & ACN constant
- pH 5.90, 6.10, 6.30, 6.50
- Column temp 30, 35, 40, 45 °C
- Gradient Time: 10-20 minutes (10-55% organic gradient)

Screen 3 Results: Optimal Conditions for ACN

26

Example of a Resolution Model Eqn.

- Peak 3 resolution
 - $$\begin{split} R &= 3.0607 + 0.4109(GT) 0.3367(Temp) \\ &- 0.7772(pH) 0.2013(pH)^2 \end{split}$$

Example of a Resolution Model Eqn. Predicted Response

Analysis of Robustness

• Method capability: Resolution criteria $C_{pk} = \frac{R - LSL_{ATP}}{3\sigma}$

 σ = response standard deviation

- Monte Carlo simulation using model equation estimates σ for specified response
 - $pH \pm 0.1$, Temp $\pm 2^{\circ}C$, Gradient ± 0.25 min
 - Normally distributed
- Require $C_{pk} \ge 1.33 \rightarrow R 1.5 \ge 4\sigma$.

C_{pk} of Res_{1-2} : Range = 0 - 1.75, Robust region at surface ridge, sensitive to pH*Temp. C_{pk} of Res_{3-4} : Range > 16, linear in pH but not Temp.

Method Robustness: Operable Region

- Corners: $C_{pk} = 1.33$ for Resolutions 2, 3 and 4
- Ranges: pH 6.3 \pm 0.1, Gradient 18.5 \pm 0.5 min, Temp 42 \pm 2 °C

Optimal Conditions

• Phenylhexyl is the best column

– Literature methods use C18

- Acetonitrile gives best peak shape and resolution.
 - MeOH/Phenylhexyl can support a method that meets the ATP. This is extremely useful information for method understanding
- Gradient time, pH, column temperature have been optimized

Peak 3 Resolution: How would we evaluate this MODR?

 $R = + \ 3.0607 + 0.4109(GT) - 0.3367(Temp) - 0.7772(pH) - 0.2013(pH)^2$

++--To Check:18(-1)44(+1)6.4(+1)6.4(+1)Prediction: R=1.3 Does not satisfy ATP

- Proposed Ranges
 - Gradient Time: 18-19 min (target 18.5)
 - Column Temperature: 40-44°C (Target 42°)
 - pH: 6.2-6.4 (Target 6.3)
 - (Values are mean centered and range scaled)

Future Work and Interesting Questions

- Method validation for quantitative work
- Further exploration of method robustness and ruggedness
- Designing methods and models that incorporate multiple columns and organic phases

Conclusions

DOE methodology resulted in

- Significant improvement in the selectivity of the compendial method for separation of sildenafil analogues
- Improved method robustness
- Significant improvement in method understanding

Acknowledgements

- Sharmista Chatterjee, OPF: Reviewer support
- Sergey Arzhantsev: IT support
 - Making Fusion work with Agilent ChemStation implemented on OpenLab ECM
- Richard Verseput: S-Matrix support
- Cindy Buhse: Acting Director, CDER/OPQ Office of Testing and Research

Thank You!