
Fusion QbD® Software System

Fusion Inhaler Testing

The Only Software That Has It All!

- Can be used for all DUSA and ALL Inhaler Testing work ACI, MMI, MSLI, FSA, FSI, and NGI[®]!
- Automates LC work on multiple instruments and CDS systems!
- Part 11 support for regulatory compliance!
- Built-in workflow management system with secure templating!
- Reduces or eliminates labor intensive manual data and report review!
- Reduces analyst time by a minimum of 40%!

Fusion Inhaler Testing™

The only fully automated off-the-shelf software solution for *in vitro* inhaler testing!

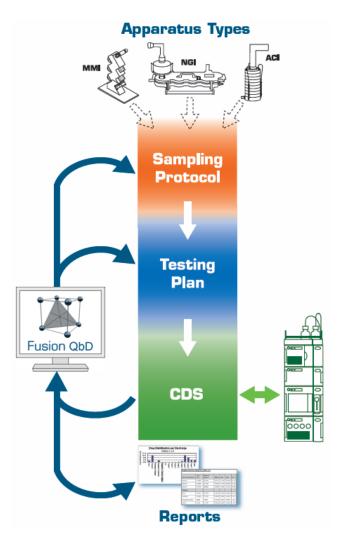
- Exceptional time-savings with validated data import, analysis, and reporting
- Complies with USP Chapter 601 and Ph. Eur. Chapter 2.9.18
- Secure, centrally-managed 21 CFR Part 11 environment

Fusion Inhaler Testing (FIT) is a totally automated, scalable software solution that meets today's regulatory requirements for inhalable drug testing.

Compliance As It Should Be

Compliance begins with access control and audit trails, and continues with data handling and storage. When testing is finished, one-click completes data analysis and generates the required reports.

Create secure templates for Cascade Impactor and Dose Uniformity testing and analysis. Incorporate email notifications and e-signature control for work review and approval.


Dramatically Increases Productivity

Currently, testing of inhalable drug delivery devices to determine aerodynamic particle size distribution (APSD) is a tedious, time-consuming manual process. FIT improves productivity by combining apparatus stage and sampling protocol information into testing plans that are exported to the Chromatography Data Software (CDS) as ready-to-run sample sets or sequences.

Further enhancing productivity, FIT eliminates manual data transcription and checking by automatically importing and analyzing chromatographic data for results calculation and reporting.

Complete Report Suite

FIT is a full-featured solution that manages the entire work and data flow for analyzing and reporting in vitro inhaler test results. Increase productivity and report quality data with FIT!

Saves Time and Improves Data Quality

FIT increases productivity with automated testing plans, data analysis, and reports that meet regulatory requirements.

Manage the Entire Workflow with FIT

Compatibility & flexibility from sampling protocol to final reports

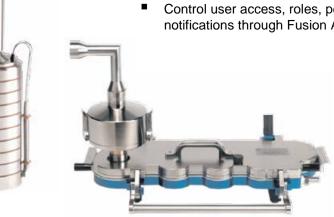
Universal Applicability

- Full compatibility with USP Apparatus 1-6 and Ph. Eur. 2.9.18 Apparatus C, D, and E
- Automatically creates testing plans for ACI, MMI, MSLI, FSA, FSI, and NGI[®]
- Seamlessly interfaces with LC instruments controlled by the Agilent ChemStation/OpenLAB, Thermo Scientific Chromeleon, Varian Galaxie, and Waters® Empower™ chromatography data software systems

Easily Create Reusable Testing Plan Templates

- Eliminates user errors with coordinated device sampling protocols
- Flexible, template-driven input of device and LC set-up parameters, including standards and system suitability samples
- File-less export of testing plans to chromatography data software as ready-to-run sample sets

Quickly Collate LC Results with File-less Data Exchange


- Automates import and analysis of chromatographic results data via a simple wizard
- One-click analysis. Results include apparatus stage averages, Mass Balance, Fine Particle Dose, Fine Particle Fraction, MMAD, and GSD
- Additional user-settable groupings by stage or particle size

Automatically Generated Reports

- USP and Ph. Eur. report formats available
- Graphical formats include histogram, Cumulative Summation Chart (CUSUM), and log probability (probit) plots
- Arranges selected individual reports in any order as Microsoft Word, Microsoft Excel,
 Adobe PDF, or HTML documents

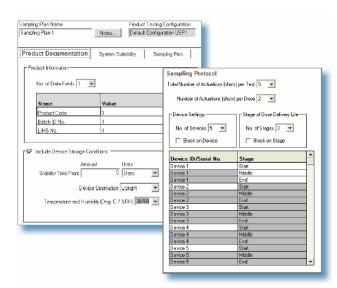
Total Compliance and Workflow Management

- Fully supports 21 CFR Part 11 compliance requirements for closed systems
- Control user access, roles, permissions, review/approval loops, and email notifications through Fusion Administrator

Complete Compatibility

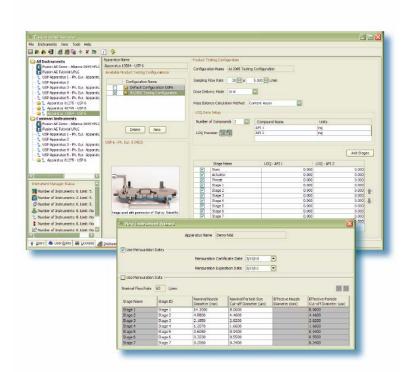
FIT automatically generates testing plans for and analyzes data from USP Apparatus 1-6 and Ph.Eur. 2.9.18 Apparatus C, D, and E. [Images used with permission of Copley Scientific.]

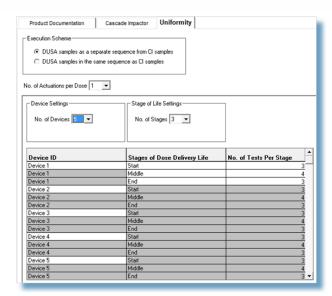
FIT Intelligent Dataflow


Reduces manual user inputs – fewer human errors

Stores Apparatus and Product-specific Testing Protocol Data

Individual apparatuses can be predefined. Apparatus and stage IDs can be stored and included in final reports for mapping results data to specific apparatus configurations providing complete transparency of analysis.


For each stage, FIT can use either the Nominal Cut-off Diameter, or store the stages Effective Diameter as determined by mensuration. This is then used to calculate the Effective Cut-off Diameter (ECD) for use in subsequent calculations. The use of ECDs increases both accuracy and precision of results. Mensuration expiration dates can be defined with warnings.


Product Testing Protocol parameters including apparatus stage configuration, delivery mode, target flow rate, APIs and their LOQs can be defined and stored for use with specific apparatuses.

Flexible Data Entry

User settable metadata fields exist to enter information about the inhalation product under test. If required, stability trial fields can be enabled, with standard storage conditions available via dropdown menus to ensure accurate data entry.

Uniformity Testing

You can set the number of devices and stages of dose delivery life, and export the DUSA injections separately or as part of the overall testing protocol.

FIT Automated Workflow – Testing Plan

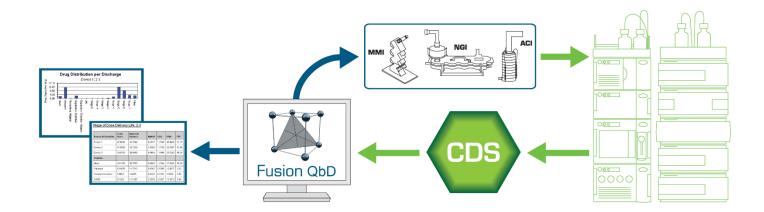
Exports testing plans as ready-to-run CDS sequences

Testing Plan to CDS Sample Set Automatically

Sampling requirements including the number of devices under test, actuations per device, and device stages of life are defined and test plans quickly generated. Standard injections can be inserted before test plans are exported to the CDS as ready to run sample sets or sequences.

Run No.	Stage of Life	Device	Apparatus Stage
CAL - L1.1.a			
CAL - L2.1.a			
CAL - L3.1.a			
CAL - L4.1.a			
CAL - L5.1.a			
CHK - L1.1.a			
1_D1_L1_S1	Start	Device 1	Stem
2_D1_L1_S2	Start	Device 1	Actuator
3_D1_L1_S3	Start	Device 1	Throat
4_D1_L1_S4	Start	Device 1	Inlet Cone
5_D1_L1_S5	Start	Device 1	Stage 0
6_D1_L1_S6	Start	Device 1	Stage 1
7_D1_L1_S7	Start	Device 1	Stage 2
8_D1_L1_S8	Start	Device 1	Stage 3
9_D1_L1_S9	Start	Device 1	Stage 4
10_D1_L1_S10	Start	Device 1	Stage 5

Stage 6 Stage 7

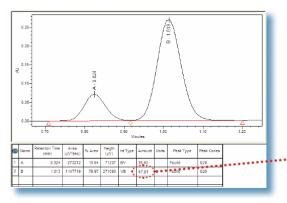

Effortlessly Builds Ready-to-Run Sequences

Through FIT, select an LC system and assay method. FIT then communicates with the CDS to build the ready-to-run sequence, including all required calibration standard and system suitability check injections.

I	Plate/Well	Inj Vol (uL)	# of Injs	Label	SampleName	Function	Method Set / Report Method	Processing	Run Time (Minutes)	SampleWeight	Dilution
1	1:A,1	10.0	1	Unk-000-000	Blank - 1	Inject Samples	Fusion QbD Tutorial UPLC	Don't Process or Report	10.00	1.00000	1.00000
2						Clear Calibration	Fusion QbD Tutorial UPLC	Normal			
3	1:A,2	10.0	1	CAL-001-001	CAL - L1.1.a	Inject Standards	Fusion QbD Tutorial UPLC	Don't Process or Report	10.00	1.00000	1.00000
4	1:A,3	10.0	1	CAL-001-002	CAL - L2.1.a	Inject Standards	Fusion QbD Tutorial UPLC	Don't Process or Report	10.00	1.00000	1.00000
5	1:A,4	10.0	1	CAL-001-003	CAL - L3.1.a	Inject Standards	Fusion QbD Tutorial UPLC	Don't Process or Report	10.00	1.00000	1.00000
6	1:A,5	10.0	1	CAL-001-004	CAL - L4.1.a	Inject Standards	Fusion QbD Tutorial UPLC	Don't Process or Report	10.00	1.00000	1.00000
7	1:A,6	10.0	1	CAL-001-005	CAL - L5.1.a	Inject Standards	Fusion QbD Tutorial UPLC	Don't Process or Report	10.00	1.00000	1.00000
8	1:A,7	10.0	1	CHK-001-001	CHK - L1.1.a	Inject Controls	Fusion QbD Tutorial UPLC	Don't Process or Report	10.00	1.00000	1.00000
9	1:A,8	10.0	1	Unk-001-001	1_D1_L1_S1	Inject Samples	Fusion QbD Tutorial UPLC	Don't Process or Report	10.00	1.00000	1.00000
10	1:B,1	10.0	1	Unk-001-002	2_D1_L1_S2	Inject Samples	Fusion QbD Tutorial UPLC	Don't Process or Report	10.00	1.00000	1.00000
11	1:B,2	10.0	1	Unk-001-003	3_D1_L1_S3	Inject Samples	Fusion QbD Tutorial UPLC	Don't Process or Report	10.00	1.00000	1.00000
12	1:B,3	10.0	1	Unk-001-004	4_D1_L1_S4	Inject Samples	Fusion QbD Tutorial UPLC	Don't Process or Report	10.00	1.00000	1.00000
13	1:B,4	10.0	1	Unk-001-005	5_D1_L1_S5	Inject Samples	Fusion QbD Tutorial UPLC	Don't Process or Report	10.00	1.00000	1.00000
14	1:B,5	10.0	1	Unk-001-006	6_D1_L1_S6	Inject Samples	Fusion QbD Tutorial UPLC	Don't Process or Report	10.00	1.00000	1.00000
15	1:B,6	10.0	1	Unk-001-007	7_D1_L1_S7	Inject Samples	Fusion QbD Tutorial UPLC	Don't Process or Report	10.00	1.00000	1.00000
16	1:8,7	10.0	1	Unk-001-008	8_D1_L1_S8	Inject Samples	Fusion QbD Tutorial UPLC	Don't Process or Report	10.00	1.00000	1.00000
17	1:B,8	10.0	1	Unk-001-009	9_D1_L1_S9	Inject Samples	Fusion QbD Tutorial UPLC	Don't Process or Report	10.00	1.00000	1.00000
18	1:C,1	10.0	1	Unk-001-010	10_D1_L1_S10	Inject Samples	Fusion QbD Tutorial UPLC	Don't Process or Report	10.00	1.00000	1.00000
19	1:C,2	10.0	1	Unk-001-011	11_D1_L1_S11	Inject Samples	Fusion QbD Tutorial UPLC	Don't Process or Report	10.00	1.00000	1.00000
20	1:C,3	10.0	1	Unk-001-012	12_D1_L1_S12	Inject Samples	Fusion QbD Tutorial UPLC	Don't Process or Report	10.00	1.00000	1.00000
21	1:C,4	10.0	1	Unk-001-013	13_D1_L1_S13	Inject Samples	Fusion QbD Tutorial UPLC	Don't Process or Report	10.00	1.00000	1.00000
22						Clear Calibration	Fusion QbD Tutorial UPLC	Normal			

Control Multiple Systems from Different Vendors

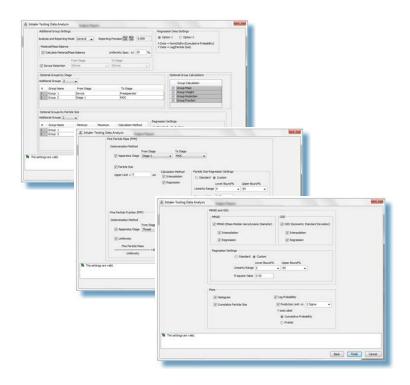
FIT seamlessly interfaces with LC instruments controlled by Agilent ChemStation/OpenLAB, Thermo Scientific Chromeleon, Varian Galaxie, and Waters® Empower™.



Automated Workflow – Data Import & Analysis

At last, totally automated data import with one-click analysis!

Validated LC Results Import


Chromatogram results are imported directly from the CDS vendors' validated software development kit (SDK). For example, an Anderson analysis with five devices, three stages of life and two API generates 390 individual results. FIT extracts these results with 100% accuracy – no intermediate files, no transcription errors, and no checking!

	Run No.	Device Settings	Stage	API - Quantity
1	1.a.1.a.D1_S1	Device 1	Stem	10.7
2	2a1a D1_52	Device 1	Actuator	60.6
3	3a1.a_D1_S3	Device 1	Nosepiece Adapter	0.4
4	4.a.1.a_D1_S4	Device 1	Expansion Chamber	13.5
5	5a1a D1_55	Device 1	Expansion Chamber Adapter	0.0
6	6.a.1.a_D1_56	Device 1	Inlet Cone	
7	7.a1.a_D1_S7	Device 1	Jet	0.3
8	8.a.1.a.D1_S8	Device 1	Stage -1	0.1:
9	9.a.1.a_D1_59	Device 1	Stage 0	0.2
10	10.a.1.a_D1_\$10	Device 1	Stage 1	0.4
11	11.a1.a_D1_S11	Device 1	Stage 2	1.5
12	12a1a_D1_S12	Device 1	Stage 3	8.9
13	13.a1.a.D1_S13	Device 1	Stage 4	64.3
14	14.a1.a_D1_S14	Device 1	Stage 5	44.5
15	15.a.1.a_D1_S15	Device 1	Stephin	16.4
16	16.a.1.a_D1_S16	Devise 1	Filter	*************
17	JAA 24 82 51	Device 2	Stem	15.6
18	18.a.1.a.D2_\$2	Device 2	Actuator	58.7

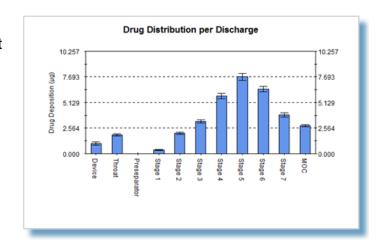
Comprehensive Data Analysis

The Data Analysis Wizard guides the user through the calculation options that can be locked to restrict user access. USP Chapter 601, Ph. Eur. 2.9.18, and FDA requirements are supported. One-click data analysis produces reports in USP, Ph.Eur., and/or general formats.

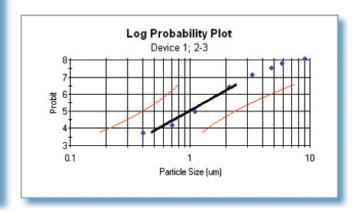
Dose Uniformity - Complete Calculation Suite

Cascade Impactor – Calculations Include:

- Material Balance
- Mass Balance
 - by Delivered Dose (Content) Uniformity
 - by Label Claim/Target Delivered Dose
 - by Content Assay
- Total Dose
- Emitted Dose
- Fine Particle Dose
 - by Apparatus Stage
 - by Particle Size
- Interpolation
- Regression
- Fine Particle Fraction
 - by Emitted Dose
 - by Label Claim/Target Delivered Dose/Content Assay
- Additional Groupings
 - by Stage
 - by Particle Size
- Mass Median Aerodynamic Diameter (MMAD)
- Geometric Standard Deviation (GSD)
- Shot Weight, Stage and Group Statistics
 - Mean
 - Variance
 - Standard Deviation
 - % RSD

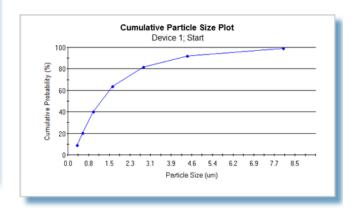

FIT Automated Workflow - Reporting

Collate individual analysis reports to produce final reports


Final Report

FIT automatically generates reports for all user inputs, operations, and results throughout the testing process. For final reports, users can select and order the content of individual reports as a Microsoft Word, Microsoft Excel, Adobe PDF, or HTML document.

Stage Deposition per Actuation (PG)											
Device - Stage of Life Device Throat Preseparator Stage 1 Stage 2 Stage 5 Stage 4 Stage 5 Stage 6 Stage 7 MOC											
Device 1 - Start	1.163	1.984	0.000	0.349	2.154	3.251	5.617	7.390	6.157	3.635	2.733
Device 2 - Start	1,102	1.935	0.000	0.438	2.059	3.377	6.103	7.616	6.633	4.071	2.750
Device 3 - Start	0.824	1.745	0.000	0.362	1.960	3.055	5.594	8.072	6.605	3.959	2.921
Mean	1.030	1.888	0.000	0.383	2.058	3.228	5.772	7.693	6.465	3.888	2.801
Variance	0.033	0.016	0.000	0.002	0.009	0.006	0.083	0.121	0.071	0.051	0.011
Std. Dev.	0.181	0.126	0.000	0.048	0.097	0.162	0.287	0.348	0.267	0.226	0.104
%R\$D	17.54	6.70	_	12.59	4.72	5.03	4.98	4.52	4.13	5.82	3.71



Dose Content Uniformity through Container Life - API									
Device		Device 1		Device 2			Device 3		
Stage of Life	Dose (µg)	% Target	Result	Dose (µg)	% Target	Result	Dose (µg)	% Target	Result
Start	35.44545	101.27271	P366	35.03182	100.09091	Pass	32.16818	91.90909	P366
Start	32.48636	92.81817	Pass	32.83636	93.81817	Pass	33.18636	94.81817	Pass
Start	32.39091	92.54546	P366	34.30000	98.00000	Pass	32:93182	94.09091	P366
Start-Mean	33.44091	95.54545	Pass	34.05606	97.30303	Pass	32.76212	93.60606	P366
Middle	36.14545	103.27271	Pass	35.47727	101.36363	Pass	36.24091	103.54546	Pass
Mode	34.30000	98.00000	Pass	32.48636	92.81817	Pass	35 63636	101.81817	P366
Middle	38.08636	108.81817	Pass	35.85909	102.45454	Pass	40.18636	114.81817	P366
Mode	37.51364	107.18183	Pass	37.70455	107.72729	Pass	35.54091	101.54546	P366
Middle-Mean	36.51136	104.31818	Pass	35.38182	101.09091	P366	36.90114	105.43181	P366
End	34.04545	97.27271	P366	37.32273	106.63637	Pass	33.95000	97.00000	P366
End	39.00909	111.45454	Pass	36.24091	103.54546	Pass	38.72273	110.63637	P366
End	37.51364	107.18183	P266	37.70455	107.72729	Pass	35.54091	101.54546	P366
Eno-Mean	36.88606	105.30303	P366	37.08940	105.96970	Pass	36.07121	103.06061	P366
No. of Test Results > ± 20.0% of Target	0	Pass		0	Pass		0	Pas	
No. of Test Results > a 25.0% of Target	0	Pass		0	O Pass		O Pass		6
Mean Result > a 15.0% of Target	0% of Target Pass Pass Pass								

Maes Cofa (PG)									
Device - Stage of Life	Total Dose	Emitted Mass	FPM(1)	FPF(4)					
Device 1 - Start	64,298	57.801	37.234	64.417					
Device 2 - Start	31,700	31.700	28.554	90.074					
Device 3 - Start	31,996	29.263	26.226	89.622					
Mean	42.665	39.588	30.671	81.371					
Variance	351,025	250.267	33,655	215.624					
Std. Dev.	18.736	15.820	5.801	14.654					
%R\$D	43.91	39.96	18.91	15.05					
_			•						

Size Distribution (µm)											
Device - Stage of Life MMAD(2) GSD(4) NICP Infercept NICP Stope R*2											
Device 1 - Start	2.506	3.476	0.399	0.541	0.964						
Device 2 - Start	0.824	2.342	-0.084	0.370	0.991						
Device 3 - Start	0.623		-0.205	0.555	0.893						
Mean	1.318	2.909	0.037	0.489	0.949						
Variance	1.068	0.643	0.102	0.011	0.003						
Std. Dev.	1.034	0.802	0.320	0.103	0.051						
%RSD 78.43 27.57 872.67 21.14 5.36											
NiCP - Normal Inverse Cumulative Probability.											

S-Matrix Software Products and Support

S-Matrix Corporation develops advanced Design of Experiment based-software that automates R&D experimental work according to Quality-by-Design principles and methodologies. S-Matrix's Fusion QbD platform automates and redefines experimentation in Analytical R&D, Chemical and Process R&D, Formulation, and Product R&D.

Fusion QbD Software System Product Suite

■ Fusion LC Method Development

Fully automated QbD experimenting on your LC system, integrated DOE, automated robustness simulation & chromatography data modeling. Chemistry screening without the need for peak tracking.

■ Fusion Analytical Method Validation

Meet regulatory guidelines with a best-practices approach toward LC method validation with comprehensive reporting. Also supports formal validation of Non-LC methods (e.g. GC, CE, Q-NMR).

■ Fusion Inhaler Testing

Create sampling plans, export and import data from your CDS via validated data exchange, calculate particle size distribution results, and generate reports according to USP 601, Ph.Eur. 2.9.18, and ISO 27427.

■ Fusion Product Development

The perfect QbD software for formulation & product development – automated experimental design selection, sophisticated analysis tools, including automated modeling and simulation, comprehensive reporting, with a full 21 CFR 11 compliance toolset.

Sales and Support

Sales: Tel: 800-336-8428 (Outside the USA: 707-441-0406). Email: Sales@smatrix.com Customer Support: Tel: 707-441-0407. Fax: 707-441-0410. Email: Support@smatrix.com

On-site and Web Training

S-Matrix offers on-site training programs for installed systems. Training includes experiment strategies, experimental design (DOE), data analysis, graphical visualization and ranking of effects, numerical and graphical optimization, and QbD Reporting.

S-Matrix also offers interactive web training which covers software features and operation, along with general principles of DOE and QbD. Web training programs can be tailored to suit your individual focus and information requirements.

To arrange an on-site or web-based training program, call 707-441-0406.

S-Matrix Corporation 1594 Myrtle Avenue Eureka, CA 95501 USA www.smatrix.com

All trademarks are the property of their respective owners